
Avoiding Communication in
Dense Linear Algebra

Grey Ballard

UC Berkeley

Dissertation Talk
April 17, 2013

Let’s start with matrix multiplication

Suppose we want to compute

A · B = C

where A and B are n × n matrices

j

n

=

A	

 B	

 C	

i i

j

n∑
k=1

aikbkj = cij

Grey Ballard 1

Two algorithms for matrix multiplication. . .

We can multiply matrices like this (“matrix-vector” algorithm):

=

A	

 B	

 C	

or like this (“blocked” algorithm):

=

A	

 B	

 C	

In both cases, we do 2n3 + O(n2) flops

Grey Ballard 2

Same computation, different performance

0 500 1000 1500 2000
0

5

10

15

20

25

30

Matrix Dimension

P
er

fo
rm

an
ce

 (
G

F
LO

P
S

)

Blocked Algorithm
Mat−Vec Algorithm

Grey Ballard 3

We must consider communication

By communication, I mean
moving data within memory hierarchy on a sequential computer
moving data between processors on a parallel computer

For high-level analysis, we’ll use these simple memory models:

SLOW

FAST

Local

Sequential Parallel

Local Local

Local

Local Local Local

Local

Local

Grey Ballard 4

Runtime model

Measure computation in terms
of # flops performed

Time per flop: γ

Measure communication in terms
of # words communicated

Time per word: β

Total running time of an algorithm (ignoring overlap):

γ · (# flops) + β · (# words)

β � γ as measured in time and energy, and the relative cost of
communication is increasing

Grey Ballard 5

Why avoid communication

Annual Improvements in Time
Flop rate DRAM Bandwidth Network Bandwidth

γ β β

59% per year 23% per year 26% per year

Energy cost comparisons

Grey Ballard 6

Source: John Shalf

Costs of matrix multiplication algorithms

Let M be the size of the fast memory

The blocked algorithm uses a block size of
√

M/3

Computation Communication
(# flops) (# words)

Mat-Vec Algorithm O(n3) O(n3)

Blocked Algorithm O(n3) O
(

n3
√

M

)

Can we do better than the blocked algorithm?

No . . . and Yes

Grey Ballard 7

SLOW

FAST

Costs of matrix multiplication algorithms

Let M be the size of the fast memory

The blocked algorithm uses a block size of
√

M/3

Computation Communication
(# flops) (# words)

Mat-Vec Algorithm O(n3) O(n3)

Blocked Algorithm O(n3) O
(

n3
√

M

)

Can we do better than the blocked algorithm?

No . . . and Yes

Grey Ballard 7

SLOW

FAST

Costs of matrix multiplication algorithms

Let M be the size of the fast memory

The blocked algorithm uses a block size of
√

M/3

Computation Communication
(# flops) (# words)

Mat-Vec Algorithm O(n3) O(n3)

Blocked Algorithm O(n3) O
(

n3
√

M

)

Can we do better than the blocked algorithm?

No . . . and Yes

Grey Ballard 7

SLOW

FAST

Summary

some communication is necessary: we can prove lower bounds
for Strassen’s matrix multiplication*
for “classical” dense linear algebra

theoretical analysis identifies sub-optimal algorithms and spurs
algorithmic innovation

parallel implementation of Strassen’s matrix multiplication*
solving symmetric indefinite linear system*
computing eigenvalues of a symmetric band matrix
computing a tall-skinny SVD
LU and QR factorizations
nonsymmetric eigendecompositions

minimizing communication leads to speedups in practice

Grey Ballard 8

Theory to practice

Theoretical Lower Bounds

Algorithmic Innovation

Optimized Implementation

Improved Applications

Grey Ballard 9

Lower bounds for classical matrix multiplication

Assume O(n3) algorithm
Sequential case with fast memory of size M

lower bound on words moved between fast/slow mem:

Ω

(
n3
√

M

)
[Hong & Kung 81]

attained by blocked algorithm
Parallel case with P processors (local memory of size M)

lower bound on words communicated (along critical path):

Ω

(
n3

P
√

M

)
[Toledo et al. 04]

also attainable

Grey Ballard 10

SLOW

FAST

Local

Local Local

Local

Local Local Local

Local

Local

Let’s ask again:

Can we do better than the blocked algorithm?

Given the computation involved, it minimized communication. . .

. . . but what if we change the computation?

It’s possible to reduce both computation and communication

Grey Ballard 11

Let’s ask again:

Can we do better than the blocked algorithm?

Given the computation involved, it minimized communication. . .

. . . but what if we change the computation?

It’s possible to reduce both computation and communication

Grey Ballard 11

Strassen’s algorithm for matrix multiplication
Strassen showed how to use 7 multiplies instead of 8 for 2× 2 multiplication[

C11 C12
C21 C22

]
=

[
A11 A12
A21 A22

] [
B11 B12
B21 B22

]
Classical Algorithm

M1 = A11 · B11

M2 = A12 · B21

M3 = A11 · B12

M4 = A12 · B22

M5 = A21 · B11

M6 = A22 · B21

M7 = A21 · B12

M8 = A22 · B22

C11 = M1 + M2

C12 = M3 + M4

C21 = M5 + M6

C22 = M7 + M8

Strassen’s Algorithm

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6

Grey Ballard 12

Strassen’s algorithm for matrix multiplication
Strassen showed how to use 7 multiplies instead of 8 for 2× 2 multiplication

Flop count recurrence:

F (n) = 7 · F (n/2) + Θ(n2)

F (n) = Θ
(
nlog2 7)

log2 7 ≈ 2.81

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6

Grey Ballard 12

Sequential communication costs

If you implement Strassen’s algorithm recursively
on a sequential computer:

Computation Communication
flops # words

Classical
O(n3) O

((
n√
M

)3
M
)

(blocked)

Strassen O(nlog2 7) O
((

n√
M

)log2 7
M
)

Can we reduce Strassen’s communication cost further?

Grey Ballard 13

SLOW

FAST

Sequential communication costs

If you implement Strassen’s algorithm recursively
on a sequential computer:

Computation Communication
flops # words

Classical
O(n3) O

((
n√
M

)3
M
)

(blocked)

Strassen O(nlog2 7) O
((

n√
M

)log2 7
M
)

Can we reduce Strassen’s communication cost further?

Grey Ballard 13

SLOW

FAST

Lower bounds for Strassen’s algorithm

Theorem (Ballard, Demmel, Holtz, Schwartz 12)
On a sequential machine, Strassen’s algorithm must communicate

words = Ω

((
n√
M

)log2 7

M

)

and on a parallel machine, it must communicate

words = Ω

((
n√
M

)log2 7 M
P

)

This work

received the SPAA Best Paper Award [BDHS11]

appeared in the Journal of the ACM [BDHS12a]

and has been invited to appear as a Research Highlight in the
Communications of the ACM

Grey Ballard 14

Lower bounds for Strassen’s algorithm

Theorem (Ballard, Demmel, Holtz, Schwartz 12)
On a sequential machine, Strassen’s algorithm must communicate

words = Ω

((
n√
M

)log2 7

M

)

and on a parallel machine, it must communicate

words = Ω

((
n√
M

)log2 7 M
P

)

This work

received the SPAA Best Paper Award [BDHS11]

appeared in the Journal of the ACM [BDHS12a]

and has been invited to appear as a Research Highlight in the
Communications of the ACM

Grey Ballard 14

Computation graph analysis

Input / Output
Intermediate value
Dependency

RS

WS

S V

We connected graph expansion to communication
expansion describes the relationship between a subset and its
neighbors in the complement
larger expansion implies more communication necessary

Grey Ballard 15

Strassen’s computation graph

`

7 5 4 1 3 2 6

11 12 21 22

11 12 21 22 11 12 21 22

Enc A

Dec C

Enc B

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11

M3 = A11 · (B12 − B22)

M4 = A22 · (B21 − B11)

M5 = (A11 + A12) · B22

M6 = (A21 − A11) · (B11 + B12)

M7 = (A12 − A22) · (B21 + B22)

C11 = M1 + M4 − M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 − M2 + M3 + M6

Grey Ballard 16

Optimal Parallel Algorithm?

This lower bound proves that the sequential recursive algorithm is
communication-optimal

What about the parallel case?

Earlier attempts to parallelize Strassen had communication costs
which exceeded the lower bound
We developed a new algorithm that is communication-optimal,
called Communication-Avoiding Parallel Strassen (CAPS)
[BDH+12b]

Grey Ballard 17

Optimal Parallel Algorithm?

This lower bound proves that the sequential recursive algorithm is
communication-optimal

What about the parallel case?

Earlier attempts to parallelize Strassen had communication costs
which exceeded the lower bound
We developed a new algorithm that is communication-optimal,
called Communication-Avoiding Parallel Strassen (CAPS)
[BDH+12b]

Grey Ballard 17

Main idea of CAPS algorithm

At each level of recursion tree, choose either breadth-first or depth-first
traversal of the recursion tree

Breadth-First-Search (BFS) Depth-First-Search (DFS)

Runs all 7 multiplies in parallel
each uses P/7 processors

Requires 7/4 as much extra memory

Requires communication, but
minimizes communication in subtrees

Runs all 7 multiplies sequentially
each uses all P processors

Requires 1/4 as much extra memory

Increases communication by factor of
7/4 in subtrees

Grey Ballard 18

Is it optimal?

After algorithmic analysis, we can compare communication costs to
the lower bound:

Communication
words

CAPS O
(

max
{(

n√
M

)log2 7
M
P ,

n2

P2/ log2 7

})
Lower Bound

Ω

((
n√
M

)log2 7
M
P

)
[BDHS11]

New Lower Bound
[BDH+12a]

Grey Ballard 19

Is it optimal?

After algorithmic analysis, we can compare communication costs to
the lower bound:

Communication
words

CAPS O
(

max
{(

n√
M

)log2 7
M
P ,

n2

P2/ log2 7

})
Lower Bound

Ω

((
n√
M

)log2 7
M
P

)
[BDHS11]

New Lower Bound
Ω
(

n2

P2/ log2 7

)
[BDH+12a]

Grey Ballard 19

Performance of CAPS on a large problem

Strong-scaling on a Cray XT4, n = 94,080

 0

 10

 20

 30

 40

 50

 100 1000 10000

E
ff
e
ct

iv
e
 G

flo
p
s

/
se

c
/
p
ro

ce
ss

o
r

Number of Processors

Classical Peak

New Algorithm
Best Previous Strassen
Best Classical

Grey Ballard 20

Actual Peak Strassen-Winograd peak Performance Model

Can we beat Strassen?

Strassen’s algorithm allows for less computation and communication
than the classical O(n3) algorithm

We have algorithms that attain its communication lower bounds and
perform well on highly parallel machines

Can we do any better?

Yes, but there are other complications

Let’s go back to classical matrix algorithms

Grey Ballard 21

Can we beat Strassen?

Strassen’s algorithm allows for less computation and communication
than the classical O(n3) algorithm

We have algorithms that attain its communication lower bounds and
perform well on highly parallel machines

Can we do any better?
Yes, but there are other complications

Let’s go back to classical matrix algorithms

Grey Ballard 21

Lower bounds for classical matrix multiplication

Assume O(n3) algorithm
Sequential case with fast memory of size M

lower bound on words moved between fast/slow mem:

Ω

(
n3
√

M

)
[Hong & Kung 81]

attained by blocked algorithm
Parallel case with P processors (local memory of size M)

lower bound on words communicated (along critical path):

Ω

(
n3

P
√

M

)
[Toledo et al. 04]

also attainable

Grey Ballard 22

SLOW

FAST

Local

Local Local

Local

Local Local Local

Local

Local

Extensions to the rest of linear algebra

Grey Ballard 23

Theorem (Ballard, Demmel, Holtz, Schwartz 11)
If a computation “smells” like 3 nested loops, it must communicate

words = Ω

(
flops√

memory size

)

This result applies to
dense or sparse problems
sequential or parallel computers

This work was recognized with the SIAM Linear Algebra Prize,
given to the best paper from the years 2009-2011Main Idea

Extensions to the rest of linear algebra

Grey Ballard 23

Theorem (Ballard, Demmel, Holtz, Schwartz 11)
If a computation “smells” like 3 nested loops, it must communicate

words = Ω

(
flops√

memory size

)

What smells like 3 nested loops?

the rest of BLAS 3 (e.g. matrix multiplication, triangular solve)

Cholesky, LU, LDLT , LTLT decompositions

QR decomposition

eigenvalue and SVD reductions

sequences of algorithms (e.g. repeated matrix squaring)

graph algorithms (e.g. all pairs shortest paths)

This work was recognized with the SIAM Linear Algebra Prize,
given to the best paper from the years 2009-2011Main Idea

Extensions to the rest of linear algebra

Grey Ballard 23

Theorem (Ballard, Demmel, Holtz, Schwartz 11)
If a computation “smells” like 3 nested loops, it must communicate

words = Ω

(
flops√

memory size

)

What if the computation smells like 5 nested loops?

. . . come see Nick’s talk next week

Main Idea

Optimal algorithms - sequential O(n3) linear algebra

Computation Optimal
Algorithm

BLAS 3 blocked algorithms
[Gustavson 97]

Cholesky
LAPACK

[Ahmed & Pingali 00]
[BDHS10]

Symmetric LAPACK (rarely)
Indefinite [BDD+12a]

LU
LAPACK (rarely)

[Toledo 97]∗

[Grigori et al. 11]

QR

LAPACK (rarely)
[Frens & Wise 03]

[Elmroth & Gustavson 98]∗

[Hoemmen et al. 12]∗

Eig, SVD [BDK12a], [BDD12b]

Grey Ballard 24

SLOW

FAST

Parallel Case

Example: symmetric indefinite linear solve

Suppose we want to solve Ax = b where A

is symmetric (save half the storage and flops)
but indefinite (need to permute rows/cols for numerical stability)

We generally want to compute a factorization

PAPT = LTLT

P is a permutation, L is triangular, and T is symmetric and “simpler”

Grey Ballard 25

Reducing communication improves performance

Performance of symmetric indefinite linear system solvers

0 10000 20000 30000 40000 50000
0

50

100

150

200

Matrix Dimension

P
er

fo
rm

an
ce

 (
G

F
LO

P
S

)

New Algorithm
LAPACK

Implemented within PLASMA library [BBD+13]
This work will receive a Best Paper Award at IPDPS ’13

Grey Ballard 26

Aasen’s symmetric indefinite factorization

We’re solving Ax = b where A = AT but A is indefinite

Standard approach is to compute PAPT = LDLT

L is lower triangular and D is block diagonal (1× 1 and 2× 2 blocks)
requires complicated pivoting, harder to do tournament pivoting

Aasen’s approach is to compute PAPT = LTLT [Aas71]
L is lower triangular and T is tridiagonal
pivoting is more like LU (nonsymmetric case)

= A L T LT

= A L H = H T LT

Grey Ballard 27

Blocked version of Aasen’s algorithm

Compute block column of H from T and L:

H T L
T

 =

Compute block column of L and subdiagonal block of H with LU:

A L H

 =

Grey Ballard 28

Converting scalar to blocked algorithm. . .

1 H1:J−1,J = T1:J−1,1:J−1LT
1:J−1,J

2 AJ,J = LJ,1:J−1H1:J−1,J + LJ,JHJ,J

3 HJ,J = TJ,J−1LT
J−1,J + TJ,JLT

J,J

4 AJ+1:N,J = LJ+1:N,1:JH1:J,J + LJ+1:N,J+1HJ+1,J

5 HJ+1,J = TJ+1,JLT
J,J

Grey Ballard 29

Computing symmetric blocks of T

Since diagonal blocks of T are symmetric, need to be computed from a
symmetric equation, which includes two-sided triangular solve:

A L W

 =

WT LT

 +

L LTT

=+

W ∼ H

Grey Ballard 30

Other complications

How to do tall-skinny LU decomposition?
use tournament pivoting
use recursive algorithm
use LAPACK algorithm

Need to take care in applying symmetric permutations

We still need to decompose band matrix T :
non-symmetric band LU decomposition
successive band reduction (orthogonal similarity transformations)
Kaufman’s symmetric retraction algorithm

Grey Ballard 31

Comm-optimal symmetric indefinite factorization

After handling all the complications, we obtain a blocked version of
Aasen’s algorithm which moves

O
(

n3
√

M

)
words

and matches the communication lower bound

A shared-memory implementation in the PLASMA library
outperforms the best implementation of the standard algorithm

Grey Ballard 32

Summary

some communication is necessary: we can prove lower bounds
for Strassen’s matrix multiplication*
for “classical” dense linear algebra

theoretical analysis identifies sub-optimal algorithms and spurs
algorithmic innovation

parallel implementation of Strassen’s matrix multiplication*
solving symmetric indefinite linear system*
computing eigenvalues of a symmetric band matrix
computing a tall-skinny SVD
LU and QR factorizations
nonsymmetric eigendecompositions

minimizing communication leads to speedups in practice

Grey Ballard 33

Collaborators

Michael Anderson (UC Berkeley)

Aydin Buluc (LBNL)

James Demmel (UC Berkeley)

Alex Druinsky (Tel-Aviv U)

Ioana Dumitriu (U Washington)

Andrew Gearhart (UC Berkeley)

Laura Grigori (INRIA)

Olga Holtz (UC Berkeley/TU Berlin)

Mathias Jacquelin (INRIA)

Nicholas Knight (UC Berkeley)

Kurt Keutzer (UC Berkeley)

Tamara Kolda (Sandia NL)

Benjamin Lipshitz (UC Berkeley)

Inon Peled (Tel-Aviv U)

Todd Plantenga (Sandia NL)

Oded Schwartz (UC Berkeley)

Edgar Solomonik (UC Berkeley)

Sivan Toledo (Tel-Aviv U)

Ichitaro Yamazaki (UT Knoxville)

Grey Ballard 34

Avoiding Communication in
Dense Linear Algebra

Grey Ballard

Grey Ballard 35

Thank You!

www.eecs.berkeley.edu/~ballard
http://bebop.cs.berkeley.edu

www.eecs.berkeley.edu/~ballard
http://bebop.cs.berkeley.edu

Other Ongoing and Future Projects

implementing these algorithms in communication-bound settings
e.g., SVD of a tall-skinny matrix on a Hadoop cluster

extending these algorithmic ideas to sparse matrices
e.g., sparse matrix-matrix multiplication

using Strassen to do the rest of linear algebra in parallel

trading off local memory and communication in parallel QR
decomposition

Grey Ballard 36

Main Idea of Lower Bound Proof

Crux of proof based on geometric inequality [Loomis & Whitney 49]

x

z

z

y

x
y

A B
C

V

Volume of box

V = xyz =
√

xz · yz · xy

�A shadow�

�B
 shadow�

�C shadow�

A B
C

V

Volume of a 3D set

V ≤
√

area(A shadow) ·√
area(B shadow) ·√
area(C shadow)

Given limited set of data, how much useful computation can be done?

Grey Ballard 37

Back

Can an n × n linear system of equations Ax = b be solved in O(n2+ε)
operations, where ε is arbitrarily small?

. . . if solved affirmatively, [this] would change the world.

It is an article of faith for some of us that if O(n2+ε) is ever achieved, the
big idea that achieves it will correspond to an algorithm that is really
practical.

-Nick Trefethen, 2012 SIAM President

Grey Ballard 38

How much computation will that save?

3 2.81 2.37 2+
0

0.01%

0.1%

1%

10%

100%

P
er

ce
nt

ag
e

of
 C

la
ss

ic
al

 C
om

pu
ta

tio
n

Exponent

n=104

n=105

n=106

n=107

Grey Ballard 39

ε

Can we beat Strassen?

Exponent of matrix multiplication
over time

1960 1970 1980 1990 2000 2010
2

2.2

2.4

2.6

2.8

3 classical

Strassen

Schonhage

Coppersmith−Winograd Williams

Strassen

Bini et al.

Unfortunately, these improvements
are only theoretical because they

involve approximations
are existence proofs
have (possibly) large
constants

Grey Ballard 40

Can we beat Strassen?

Exponent of matrix multiplication
over time

1960 1970 1980 1990 2000 2010
2

2.2

2.4

2.6

2.8

3 classical

Strassen

Schonhage

Coppersmith−Winograd Williams

Strassen

Bini et al.

Unfortunately, these improvements
are only theoretical because they

involve approximations
are existence proofs
have (possibly) large
constants

Grey Ballard 40

Solving the base case. . .

2× 2× 2 [
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
=

[
c11 c12
c21 c22

]

multiplies 6 7 8

flop count O
(
n2.58) O

(
n2.81) O

(
n3)

3× 3× 3 a11 a12 a13

a21 a22 a23

a31 a32 a33

b11 b12 b13

b21 b22 b23

b31 b32 b33

 =

c11 c12 c13

c21 c22 c23

c31 c32 c33



multiplies 19 21 23 27

flop count O
(
n2.68) O

(
n2.77) O

(
n2.85) O

(
n3)

Grey Ballard 41

Solving the base case. . .

2× 2× 2 [
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
=

[
c11 c12
c21 c22

]

multiplies 6 7 8

flop count O
(
n2.58) O

(
n2.81) O

(
n3)

3× 3× 3 a11 a12 a13

a21 a22 a23

a31 a32 a33

b11 b12 b13

b21 b22 b23

b31 b32 b33

 =

c11 c12 c13

c21 c22 c23

c31 c32 c33



multiplies 19 21 23 27

flop count O
(
n2.68) O

(
n2.77) O

(
n2.85) O

(
n3)

Grey Ballard 41

Solving the base case. . .

2× 2× 2 [
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
=

[
c11 c12
c21 c22

]

multiplies 6 7 8

flop count O
(
n2.58) O

(
n2.81) O

(
n3)

3× 3× 3 a11 a12 a13

a21 a22 a23

a31 a32 a33

b11 b12 b13

b21 b22 b23

b31 b32 b33

 =

c11 c12 c13

c21 c22 c23

c31 c32 c33



multiplies 19 21 23 27

flop count O
(
n2.68) O

(
n2.77) O

(
n2.85) O

(
n3)

Grey Ballard 41

Beating Strassen

Finding a better base case corresponds to computing a low-rank
decomposition of a particular 3D tensor

= + … +

Unfortunately, this is a nonlinear integer optimization problem
it’s NP-complete (in general), but need to solve it only once
I used this method to re-discover Strassen

Could use (numerical) low-rank tensor approximation algorithms
very efficient, but no guarantees

Grey Ballard 42

Beating Strassen

Finding a better base case corresponds to computing a low-rank
decomposition of a particular 3D tensor

= + … +

Unfortunately, this is a nonlinear integer optimization problem
it’s NP-complete (in general), but need to solve it only once
I used this method to re-discover Strassen

Could use (numerical) low-rank tensor approximation algorithms
very efficient, but no guarantees

Grey Ballard 42

Beating Strassen

Finding a better base case corresponds to computing a low-rank
decomposition of a particular 3D tensor

= + … +

Unfortunately, this is a nonlinear integer optimization problem
it’s NP-complete (in general), but need to solve it only once
I used this method to re-discover Strassen

Could use (numerical) low-rank tensor approximation algorithms
very efficient, but no guarantees

Grey Ballard 42

If we find it, we can make it practical!
same parallelization as Strassen, but with
less computation and communication

Memory-Independent Lower Bounds

Classical Strassen
Memory-dependent

Ω
(

n3

P
√

M

)
Ω
(

nω

PMω/2−1

)
lower bound

Memory-independent
Ω
(

n2

P2/3

)
Ω
(

n2

P2/ω

)
lower bound

Perfect strong
P = O

(
n3

M3/2

)
P = O

(
nω

Mω/2

)
scaling range

Attaining algorithm [SD11] [BDH+12b]

Grey Ballard 43

Example: Compute Eigenvalues of Band Matrix

Suppose we want to solve Ax = λx where A

is symmetric (save half the storage and flops)
has band structure (exploit sparsity – ignore zeros)

We generally want to compute a factorization

A = QTQT

Q is an orthogonal matrix and T is symmetric tridiagonal

Grey Ballard 44

Successive Band Reduction (bulge-chasing)

constraint:
c + d ≤ b

5

Q1

4

3

2

1
6

Q1
T

b+
1

d+
1

c

c+
d

c d

Q2

Q2
T

Q3

Q3
T

Q4

Q4
T

Q5

Q5
T

b = bandwidth
c = columns
d = diagonals

Grey Ballard 45

CASBR Data Access Pattern

One bulge at a time Four bulges at a time

Grey Ballard 46

Implementation of Band Eigensolver (CASBR)

Speedup of sequential CASBR over Intel’s Math Kernel Library

1.0

1.0

0.9

1.0

1.0

0.9

1.2

1.1

0.9

0.9

0.9

0.9

1.6

1.5

1.4

1.2

1.1

1.1

1.8

1.8

1.7

1.5

1.3

1.2

2.0

1.9

1.8

1.7

1.4

1.2

2.0

2.0

1.9

1.8

1.6

1.2

Bandwidth b

M
at

rix
 d

im
en

si
on

 n

50 100 150 200 250 300

24000

20000

16000

12000

8000

4000

Benchmarked on Intel 10-core Westmere-EX socket [BDK12a]

Grey Ballard 47

Algorithmic Details

Implementation of Band Eigensolver (CASBR)

Speedup of parallel CASBR (10 threads) over PLASMA library

4.0

4.2

4.4

4.7

6.7

6.2

3.2

3.6

4.6

5.1

5.7

5.7

4.6

4.5

4.5

4.7

5.5

3.7

4.7

4.3

4.1

3.6

4.0

3.4

5.2

5.0

4.8

4.4

3.8

3.0

5.9

5.9

5.5

5.5

5.0

3.8

Bandwidth b

M
a
tr

ix
 d

im
e
n
s
io

n
 n

50 100 150 200 250 300

24000

20000

16000

12000

8000

4000

Benchmarked on Intel 10-core Westmere-EX socket [BDK12a]

Grey Ballard 47

Algorithmic Details

Example Application: Video Background Subtraction

Idea: use Robust PCA algorithm [CLMW09] to subtract constant
background from the action of a surveillance video

Given a matrix M whose columns represent frames, compute

M = L + S

where L is low-rank and S is sparse

Grey Ballard 48

Example Application: Video Background Subtraction

Q

U Σ VT * **
R"

Threshold these singular values

Compute:

M = L + S

where L is low-rank and S is sparse

The algorithm works iteratively, each
iteration requires a singular value
decomposition (SVD)

M is 110,000×100

Communication-avoiding algorithm
provided 3× speedup over best GPU
implementation [ABDK11]

Grey Ballard 49

Overview of Divide & Conquer Algorithm for
Nonsymmetric Eigenproblem

One step of divide and conquer:

1 Compute
(

I + (A−1)2k
)−1

implicitly

maps eigenvalues of A to 0 and 1 (roughly)
2 Compute rank-revealing decomposition to find invariant subspace
3 Output block-triangular matrix

Anew = U∗AU =

[
A11 A12
ε A22

]

block sizes chosen to minimize norm of ε
eigenvalues of A11 all lie outside unit circle, eigenvalues of A22 lie
inside unit circle, subproblems solved recursively
stable, but progress guaranteed only with high probability

Grey Ballard 50

Reduction Example: LU

It’s easy to reduce matrix multiplication to LU:

T ≡

 I 0 −B
A I 0
0 0 I

 =

 I
A I
0 0 I

I 0 −B
I A · B

I

 ≡ L · U

LU factorization can be used to perform matrix multiplication
Communication lower bound for matrix multiplication applies to LU

Reduction to Cholesky is a little trickier, but same idea [BDHS10]

Grey Ballard 51

Algorithms - Parallel O(n3) Linear Algebra

Algorithm Reference
Factor exceeding Factor exceeding
lower bound for lower bound for

words # messages
Matrix Multiply [Can69] 1 1

Cholesky ScaLAPACK log P log P
Symmetric [BDD+12a] proposed work proposed work
Indefinite ScaLAPACK log P (N/P1/2) log P

LU [GDX11] log P log P
ScaLAPACK log P (N/P1/2) log P

QR [DGHL12] log P log3 P
ScaLAPACK log P (N/P1/2) log P

SymEig, SVD [BDK12a] proposed work proposed work
ScaLAPACK log P N/P1/2

NonsymEig [BDD12b] log P log3 P
ScaLAPACK P1/2 log P N log P

*This table assumes that one copy of the data is distributed evenly across processors

Red = not optimal Local

Local Local

Local

Local Local Local

Local

Local

Grey Ballard 52

Back

Symmetric Eigenproblem and SVD via SBR

We’re solving the symmetric eigenproblem via reduction to tridiagonal form

Conventional approach (e.g. LAPACK) is direct tridiagonalization

Two-phase approach reduces first to band, then band to tridiagonal

Direct:

1 2 1 2

A T
Two-step:

1 2 1 2 1 2

A B T

first phase can be done efficiently

second phase is trickier, requires
successive band reduction (SBR)
[BLS00]

involves “bulge-chasing”
we’ve improved it to reduce
communication [BDK12b]

Grey Ballard 53

Back

Communication-Avoiding SBR - theory

Flops Words Moved Data Re-use
Schwarz 4n2b O(n2b) O(1)

M-H 6n2b O(n2b) O(1)

B-L-S* 5n2b O(n2 log b) O
(

b
log b

)
CA-SBR† 5n2b O

(
n2b2

M

)
O
(M

b

)
*with optimal parameter choices

†assuming 1 ≤ b ≤
√

M/3

Grey Ballard 54

Back

Performance of CAPS on large problems

Strong-scaling on Intrepid (IBM BG/P), n = 65,856.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

5e2 1e3 5e3 1e4 5e4

E
ff
e
c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,
F

ra
c
ti
o
n
 o

f
P

e
a
k

Number of Cores

Strong-Scaling Range

classical

actual

CAPS

2.5D-Strassen

2D-Strassen

Strassen-2D

2.5D

2D
Classical Peak

Grey Ballard 55

Back

Performance of CAPS on large problems

Strong-scaling on Intrepid (IBM BG/P), n = 65,856.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

5e2 1e3 5e3 1e4 5e4

E
ff
e
c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,
F

ra
c
ti
o
n
 o

f
P

e
a
k

Number of Cores

Strong-Scaling Range

classical

actual

Strassen-Winograd

CAPS

2.5D-Strassen

2D-Strassen

Strassen-2D

2.5D

2D
Classical Peak

Grey Ballard 56

Back

Performance: Model vs Actual

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5e2 1e3 5e3 1e4 5e4

E
ff
e
c
ti
v
e
 P

e
rf

o
rm

a
n
c
e
,
F

ra
c
ti
o
n
 o

f
P

e
a
k

Number of Cores

CAPS Model
2.5D Model

2D Model
CAPS no cont.

CAPS
2.5D

2D

Comparison of the parallel models with the algorithms
in strong scaling of matrix dimension n = 65,856 on Intrepid.

Grey Ballard 57

Back

References I

J. O. Aasen.
On the reduction of a symmetric matrix to tridiagonal form.
BIT Numerical Mathematics, 11:233–242, 1971.
10.1007/BF01931804.

M. Anderson, G. Ballard, J. Demmel, and K. Keutzer.
Communication-avoiding QR decomposition for GPUs.
In Proceedings of the 2011 IEEE International Parallel & Distributed Processing Symposium, IPDPS ’11, pages 48–58,
Washington, DC, USA, 2011. IEEE Computer Society.

G. Ballard, D. Becker, J. Demmel, J. Dongarra, A. Druinsky, I. Peled, O. Schwartz, S. Toledo, and I. Yamazaki.

Implementing a blocked AasenÕs algorithm with a dynamic scheduler on multicore architectures, 2013.
To appear.

G. Ballard, J. Demmel, A. Druinsky, I. Peled, O. Schwartz, and S. Toledo.
Communication avoiding symmetric indefinite factorization, 2012.
In preparation.

G. Ballard, J. Demmel, and I. Dumitriu.
Communication-optimal parallel and sequential nonsymmetric eigenvalue algorithm, 2012.
In preparation.

G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz.
Brief announcement: strong scaling of matrix multiplication algorithms and memory-independent communication lower
bounds.
In Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’12, pages 77–79, New
York, NY, USA, 2012. ACM.

Grey Ballard 58

References II

G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz.
Communication-optimal parallel algorithm for Strassen’s matrix multiplication.
In Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’12, pages 193–204,
New York, NY, USA, 2012. ACM.

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Communication-optimal parallel and sequential Cholesky decomposition.
SIAM Journal on Scientific Computing, 32(6):3495–3523, 2010.

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Graph expansion and communication costs of fast matrix multiplication: regular submission.
In Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’11, pages 1–12. ACM,
2011.

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Graph expansion and communication costs of fast matrix multiplication.
J. ACM, 59(6):32:1–32:23, December 2012.

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz.
Sequential communication bounds for fast linear algebra.
Technical Report EECS-2012-36, UC Berkeley, March 2012.

G. Ballard, J. Demmel, and N. Knight.
Avoiding communication in the symmetric eigenproblem and SVD, 2012.
In preparation.

Grey Ballard 59

References III

G. Ballard, J. Demmel, and N. Knight.
Communication avoiding successive band reduction.
In Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming, PPoPP ’12,
pages 35–44, New York, NY, USA, 2012. ACM.

C. Bischof, B. Lang, and X. Sun.
A framework for symmetric band reduction.
ACM Trans. Math. Soft., 26(4):581–601, December 2000.

L. Cannon.
A cellular computer to implement the Kalman filter algorithm.
PhD thesis, Montana State University, Bozeman, MN, 1969.

Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright.
Robust principal component analysis?
arXiv preprint arXiv:0912.3599, 2009.

J. Demmel, L. Grigori, M. Hoemmen, and J. Langou.
Communication-optimal parallel and sequential QR and LU factorizations.
SIAM Journal on Scientific Computing, 34(1):A206–A239, 2012.

L. Grigori, J. Demmel, and H. Xiang.
CALU: A communication optimal LU factorization algorithm.
SIAM Journal on Matrix Analysis and Applications, 32(4):1317–1350, 2011.

E. Solomonik and J. Demmel.
Communication-optimal parallel 2.5D matrix multiplication and LU factorization algorithms.
In Emmanuel Jeannot, Raymond Namyst, and Jean Roman, editors, Euro-Par 2011 Parallel Processing, volume 6853 of
Lecture Notes in Computer Science, pages 90–109. Springer Berlin / Heidelberg, 2011.

Grey Ballard 60

Avoiding Communication in
Dense Linear Algebra

Grey Ballard

Grey Ballard 61

Thank You!

www.eecs.berkeley.edu/~ballard
http://bebop.cs.berkeley.edu

www.eecs.berkeley.edu/~ballard
http://bebop.cs.berkeley.edu

